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Many variations in UTLS trace gases (such
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from the HIRDLS satellite instrument) are
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For OCTAV-UTLS, we will develop unified geophysically-based
metrics and apply them consistently to data from different
measurement platforms. We will use these metrics to assess our

ability to diagnose and understand UTLS composition trends and
variability, and to recommend future UTLS measurement needs.
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Methods / Tools

GEOS OM5E72, 20130106, 12UT, 100.31°E
; |

I"l.‘/ll‘llﬁ I‘\Illl:

el ¢ 1 JETPAC (Jet and Tropopause Products
——=—%—¢' & for Analysis and Characterization;
N " - <1 Manney et al, 2011) provides tools to

20

16 (100

Altitude / km
N

:

| al . .

e V77— © analyze trace gases in relation to the
2 A EED \ \/\M | upper tropospheric jets and the
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»UT Jets are identified between 400 and 100hPa as windspeed maxima
>40m/s; further details are given by Manney et al (2011, 2014, 2017a).

> The subtropical jet (STJ) is identified as the lowest latitude westerly jet with
tropopause altitude >13km at its equatorward edge, and across which the
tropopause altitude drops by over 2km

»STJ and PJ changes are considered separately, and their variability and
changes are examined as a function of region and season.
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== upper tropospheric jets, the
—__tropopauses, and equivalent
latitude, as shown in the examples
' to the left. Using different
s geophysical coordinate combin-
—...— ations can highlight variability due
to different processes.

Because reanalyses are needed to define
= ———— = — —= geophysical coordinates, the UTLS results
=== from the SPARC Reanalysis Intercomparison
Project (S-RIP) are critical - e.g., to select
e s appropriate reanalysis products to use, and to
-~ == = | understand how composition variability and
: trends may depend on those choices: The left
- | example compares UT |ets distributions In

== | __. = reanalyses (Manney et al, 2017); the example
" below assesses robustness of UT jet trends in
== el reanalyses (Manney & Hegglin, 2017).
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The left figure above shows how the jets and ozone from the MERRA-2
reanalysis are sampled by MLS and ACE for a three-month period. On the
right, MLS and ACE data mapped in coordinates with respect to the
subtropical jet are shown, demonstrating that sparse coverage of ACE
does sample a wide range of the dynamical condition-space surrounding
the upper tropospheric jets.

Knowledge of the locations of measurements
4 with respect to the jets and tropopause
Ll facilitates  interpretation of those measure-

"1 ments: The example to the left shows ozone
sonde measurements at Boulder, CO
compared with the position of the subtropical
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Evaluating measurements in broad regions with respect to the jets and
tropopause can aid in comparing measurements with widely differing
resolution and spatio-temporal sampling, such as the STARTOS8 aircraft
and MLS satellite measurements shown below.

MLS Obs Frequency STARTO8 Obs Frequency

4 0.5
E 0.4
o ° 1.
= % 0.3 F —
o 0 g_ fﬂ ~
P o 0.2 \ y
o= _2 L
= 0.1 .
< 4 0.0 / h

—-20 —10 O 10 —20 —10 O 10 20 0.0 DE 0.4 0.6 DEH’J

Latitude from Jet / degrees  Latitude from Jet / dearees Ozone / ppmv

OCTAV-UTLS will quantify trends and variability in UTLS
composition using all available observations; identify changes in
transport and mixing processes; understand how measurement

characteristics limit our ability to quantify trends; and identify future
measurement needs to overcome these limitations.
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